Ácido nucleico

Representación 3D del ADN.

Los ácidos nucleicos son grandes polímeros formados por la repetición de monómeros denominados nucleótidos, unidos mediante enlaces fosfodiéster. Se forman largas cadenas; algunas moléculas de ácidos nucleicos llegan a alcanzar tamaños gigantescos, de millones de nucleótidos encadenados. Existen dos tipos básicos, el ADN y el ARN.

El descubrimiento de los ácidos nucleicos se debe a Johann Friedrich Miescher, que en el año 1869 aisló los núcleos de las células una sustancia ácida a la que llamó nucleína,[1] nombre que posteriormente se cambió a ácido nucleico. Posteriormente, en 1953, James Watson y Francis Crick descubrieron la estructura del ADN, empleando la técnica de difracción de rayos X.

Importancia de los ácidos nucleicos

Todos los organismos poseen estas biomoléculas que dirigen y controlan la síntesis de sus proteínas, proporcionando la información que determina su especificidad y características biológicas, ya que contienen las instrucciones necesarias para realizar los procesos vitales y son las responsables de todas las funciones básicas en el organismo.[2]

Tipos de ácidos nucleicos

Existen dos tipos de ácidos nucleicos : ADN (ácido desoxirribonucleico) y ARN (ácido ribonucleico), que se diferencian:

Bases nitrogenadas

Las Bases Nitrogenadas son las que contienen la información genética, éstas presenta una estructura cíclica que contiene carbono, nitrógeno, hidrógeno y oxígeno.[3] Se dividen en dos tipos:

La presencia de los átomos de nitrógeno le da un carácter básico a estos compuestos. Son aromáticas y por lo tanto son planas, también son insolubles en agua y pueden establecer interacciones hidrofóbicas entre ellas; estas interacciones sirven para estabilizar la estructura tridimensional de los ácidos nucleicos.[4] La existencia de distintos radicales hace que puedan aparecer varias bases nitrogenadas, las cuales son:

Nucleósidos y nucleótidos

Un nucleósido es una unidad conformada por una pentosa (ribosa o desoxirribosa) unida a una base nitrogenada. La unión se realiza mediante un enlace N-glucosídico, con configuración beta (β), el cual es una variante del enlace glucosídico, que se forma cuando un hemicetal intramolecular reacciona con una amina, en lugar de hacerlo con un alcohol, liberándose una molécula de agua. En los nuclósidos se lleva a cabo entre el carbono 1 (carbonilo) del azúcar y uno de los átomos de nitrógeno de la base nitrogenada, si ésta es una pirimidina se une a la posición 1' y si es una purina en la posición 9'.[5]

Los planos de la base y el azúcar son perpendiculares entre sí pero las bases pueden presentar dos conformaciones diferentes:

Existen dos tipos de nucleósidos:

Para nombrar estos compuestos se debe tomar en cuenta qué base nitrogenada es y a qué azucar está unida; cuando es una base púrica se añade al nombre de ésta la terminación “-osina” y la terminación “-idina” si es una pirimidina y se antepone el prefijo “desoxi-” en el caso de los desoxirribonucleósidos.[8]

Los nucleótidos son las unidades básicas de los ácidos nucleicos y químicamente son los ésteres fosfóricos de los nucleósidos, es decir que son el resultado de la unión entre una ribosa, una base nitrogenada y un ácido fosfórico. La unión entre el nucleósido y el ácido fosfórico se lleva a cabo mediante un enlace éster que puede producirse en cualquiera de los grupos hidroxilo libres de la pentosa, pero como regla general tiene lugar en el grupo alcohol del carbono 5'. Los nucleótidos pueden contener de uno a tres grupos fosfato, unidos uno tras otro, por ejemplo el monofosfato que sólo contienen un grupo fosfato, el difosfato con dos, trifosfato con tres. La presencia del grupo fosfato que a pH 7 se encuentra ionizado, le confiere a la molécula un carácter marcadamente ácido.

Al igual que los nucleósidos, los nucleotidos también se dividen en dos grupos dependiendo de la ribosa que contenga:

Para nombrar estos compuestos existen diferentes maneras, la forma más utilizada y la más sencilla es en donde cada nucleótido se identifica con tres letras mayúsculas. La primera de ellas corresponde a la base nitrogenada que contenga el nucleótido, la segunda letra indica si es un mono-, di- o trifosfato y la tercera es la inicial del grupo fosfato, la cual es una P y por último, en el caso de los desoxirribonucleótidos se antepone una d minúscula antes de las tres letras. Otra forma de nombrarlos consiste en poner la palabra ácido al inicio y en seguida se coloca el nombre de la base nitrogenada con la terminación -ílico, pero éste sistema de nomenclatura puede ser un poco ambiguo ya que no se puede saber la cantidad de grupos fosfatos que contiene el nucleótido. También se suelen nombrar como los fosfatos de los correspondientes nucleósidos.

Por ejemplo: Se quiere nombrar el nucleótido compuesto de una adenina con un grupo fosfato y una ribosa.

Además de formar la estructura de los ácidos nucleicos los nucleótidos tienen otras funciones relevantes:

  1. El nucleósido Adenosina tiene funciones de neurotransmisor.
  2. ATP es la molécula universal para transferencia de energía.
  3. UDP y el CDP sirven como transportadores en el metabolismo de glúcidos, lípidos y otras moléculas.
  4. AMPc, GMPc y el propio ATP cumplen funciones reguladoras.
  5. AMP forma parte de la estructura de coenzimas como FAD, NAD+, NADP+ y CoA.[9]

Características del ADN

El ADN es bicatenario, está constituido por dos cadenas polinucleotídicas unidas entre sí en toda su longitud. Esta doble cadena puede disponerse en forma lineal (ADN del núcleo de las células eucarióticas) o en forma circular (ADN de las células procarióticas, así como de las mitocondrias y cloroplastos eucarióticos). La molécula de ADN porta la información necesaria para el desarrollo de las características biológicas de un individuo y contiene los mensajes e instrucciones para que las células realicen sus funciones. Dependiendo de la composición del ADN (refiriéndose a composición como la secuencia particular de bases), puede desnaturalizarse o romperse los puentes de hidrógenos entre bases pasando a ADN de cadena simple o ADNsc abreviadamente.

Excepcionalmente, el ADN de algunos virus es monocatenario.

El ADN es un polímero relativamente estable. Las reacciones espontáneas, como la desanimación de ciertas bases, la hidrólisis de los enlaces base-azúcar N-glucosídicos, la formación de dímeros de pirimidina inducida por radiación, ocurren lentamente, pero son importantes debido a que la célula tiene una baja tolerancia a los cambios en el material genético.

Se puede determinar la secuencia del ADN y se pueden sintetizar polímeros de ADN por un reglamento que incorpora métodos químicos y enzimáticos.

Estructuras ADN

Características del ARN

El ARN difiere del ADN en que la pentosa de los nucleótidos constituyentes es ribosa en lugar de desoxirribosa, y en que, en lugar de las cuatro bases A, G, C, T, aparece A, G, C, U (es decir, uracilo en lugar de timina). Las cadenas de ARN son más cortas que las de ADN, aunque dicha característica es debido a consideraciones de carácter biológico, ya que no existe limitación química para formar cadenas de ARN tan largas como de ADN, al ser el enlace fosfodiéster químicamente idéntico.El ARN está constituido casi siempre por una única cadena (es monocatenario), aunque en ciertas situaciones, como en los ARNt y ARNr puede formar estructuras plegadas complejas y estables.

Mientras que el ADN contiene la información, el ARN expresa dicha información, pasando de una secuencia lineal de nucleótidos, a una secuencia lineal de aminoácidos en una proteína. Para expresar dicha información, se necesitan varias etapas y, en consecuencia existen varios tipos de ARN:

Química de los ácidos nucleicos.

El ADN y el ARN pueden desnaturalizarse.

La elevación de la temperatura y los valores extremos de pH producen la desnaturalización del ADN de doble hélice (generalmente sucede a la temperatura de su punto de fusión). Esto provoca el desenrrollamiento de la doble hélice, debido a las desestabilización de los puentes de hidrógeno entre los pares de bases, no hay ruptura de enlaces covalentes.

La renaturalización es un proceso rápido que consiste en un solo paso, para esto deberá existir un segmento de doble hélice de una docena o más residuos que mantengan unidas las dos hebras. Cuando el pH y la temperatura regresan a valores normales, lo que estaba desenrrollado se vuelve a enrrollar espontáneamente. Pero si las dos hebras están totalmente separadas, se lleva a cabo en dos pasos. En el primero, el proceso es lento, las hebras de ADN se reconocen al azar y forman un pequeño fragmento de doble hélice. En el segundo, el proceso es más rápido y las bases que se encuentran no apareadas, se aparean progresivamente para formar la doble hélice.

Efecto hipocrómico.

Cuando se dan interacciones próximas del apilamiento de las bases de los ácidos nucleicos, estos producen una disminución de la absorción del la luz UV, en relación con la absorción de una disolución de nucleótidos libres de la misma concentración; la adsorción disminuye cuando se forma la doble cadena. A este fenómeno se le conoce como efecto hipocrómico.

Cuando se desnaturaliza un ácido nucleico se produce un efecto contrario, hay un incremento de adsorción, se le llama hipercrómico.

Las moléculas de ADN de un virus o de una bacteria en disolución se desnaturalizan en su punto de fusión (tm; es la temperatura a la que la mitad del ADN, las hebras están separadas).  Dependiendo del contenido de CΞG, es mayor el punto de fusión, debido a que son tres puentes de hidrógeno los que se deben romper.[10]

Ácidos nucleicos artificiales o ribonucleicos

Existen, aparte de los naturales, algunos ácidos nucleicos no presentes en la naturaleza (análogos de ácidos nucleicos), sintetizados en el laboratorio.

Referencias

  1. Dahm, R (Jan de 2008). «Discovering DNA: Friedrich Miescher and the early years of nucleic acid research». Human Genetics 122 (6): 565-81. ISSN 0340-6717. PMID 17901982. doi:10.1007/s00439-007-0433-0.
  2. de Necochea Campion, Rosalia (Junio de 2004). «Secuenciación de ácidos nucleicos». Métodos fisicoquímicos en biotecnología: 47. Consultado el 16 de junio de 2016.
  3. Mcmurry, John (2008). Química Orgánica (septima edición). Cengage Learning Editores. p. 1221. ISBN 0-495-11258-5.
  4. Velasco, Juan; Romero, Tómas; Salamanca, Carlos; López, Rafaela (2009). Biología 2º Bachillerato. Editex. p. 408. ISBN 8497715918.
  5. Burriel Coll, Veronica. «ESTRUCTURA Y PROPIEDADES DE LOS ÁCIDOS NUCLÉICOS». Master en Ingeniería Biomédica: 6. Consultado el 17 de junio de 2016.
  6. Weninger, Stephen; Stermitz, Frank (2007). Química orgánica. Reverte. p. 907. ISBN 842917527X.
  7. Teijón, José (2006). Fundamentos de bioquímica estructural. Editorial Tebar. p. 253. ISBN 8473602285.
  8. Devlin, Thomas (2004). Bioquímica: libro de texto con aplicaciones clínicas. Reverte. p. 31. ISBN 8429172084.
  9. Burriel Coll, Veronica. «ESTRUCTURA Y PROPIEDADES DE LOS ÁCIDOS NUCLÉICOS». Química Aplicada a la Ingeniería Biomédica: 6-8. Consultado el 17 de junio de 2016.
  10. Nelson, D. & Cox, M. (2009). Lehninger principios de bioquímica. España: Omega. pp. 287-288.

Enlaces externos

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.